What is the best version of CAMWorks 2017 to buy? with Amazing Price

Stephen Wolfe, P. CAMWorks for Solid Edge allows programmers to open a part file in native format and begin making a numerically controlled tool program immediately. There is no need to export software to another format and import it into an NC programming tool. CAM systems that are not integrated with CAD require revised parts to be re-exported, and in most cases updates to geometry must be made interactively.

Examples of machinable features recognized by CAMWorks. Missing features include: The ability to work with assembly models will enable tool-path simulation along with parts of the machine itself, such as the table and work-holding fixtures. The software will be able to check for collisions with the machine and fixtures if desired. Assembly model support also permits rough stock models such as castings to be imported as Solid Edge models. In the first release, rough stock models must be converted to the faceted STL format employed by 3D printing systems.

This knowledge capture enables customers to continuously improve their machining processes, thereby improving product quality and reducing costs. A list of machinable features. CAMWorks uses two key technologies to capture knowledge of machining processes. The first is the ability to recognize more than 20 manufacturing features as distinct from the dimension-driven design features native to CAD systems such as SolidWorks and Solid Edge.

Manufacturing features include drilled, countersunk, counter-bored, and tapped holes; irregular, rectangular, and cylindrical pockets; irregular and cylindrical bosses; faces; grooves; curves; and engravings.

It identifies them based purely on the solid model geometry. Operations plans associated with each feature. The second technology for capturing data is the Technology Database, which contains operational plans for machining various types of features. For example, the operations for producing a counter-bored hole might include center drilling, drilling of the through-hole, and milling the counterbore.

The operational parameters include tool characteristics, feeds, speeds, entry or lead-in strategies, tool changes, and other variables that the NC programmer might want to control. Tools may be selected from a comprehensive tool library included in the database.

CAMWorks pairs operational procedures with the various feature types and the sizes of features it recognizes. For example, a small hole might be matched with a drilling operation whereas a larger hole might be milled. Of course CAMWorks is not yet capable of automatically recognizing every feature in a part.

So customers also have the ability to select part faces and classify them as manufacturing features. These can then be associated with manufacturing operations in the Technology Database that enable the feature to be turned or milled.

Manufacturing operations include hole-making operations such as drilling, center drilling, and boring; rough and contour milling; and various three-axis milling operations such as z-level, flat-area milling, and pencil milling.

The ability to combine manufacturing features with predefined operations enables programmers to generate NC code much faster than is possible with more conventional graphics-based systems. Instead of specifying each tool path individually, CAMWorks enables complete operations such as roughing and finishing to be implemented in a single step.

CAMWorks automatically traverses the manufacturing feature tree and generates operational plans for each manufacturing feature. Then it generates a tool path for each operation. Programmers can simulate the tool path and compare it with the original part shape to identify undercuts and overcuts. The Technology Database contains a variety of controller types, and CAMWorks and its dealers can customize these for most commercial tool controllers.

CAMWorks uses the same library of controller models and post-processors for both the Solid Edge and SolidWorks versions of the software. The tool tab shows properties of the selected cutting tool for an operation in the technology database. CAD integration also enables families of similar parts to be programmed quickly by saving part models with new file names and changing the part geometry.

The associated NC programs automatically update with the new part. For example, two different shaped parts may contain round holes, irregular packets and bosses, slots, and fillets that use similar manufacturing processes. Such parts can be programmed much faster than would be possible with more conventional CAM software. With conventional graphics-based systems, programmers have a great deal of flexibility in how they program each part.

The same programmer may use different techniques and strategies on similar parts. Different programmers may employ even more widely varying strategies. CAMWorks toolpath simulation. CAMWorks enables companies to standardize processes by storing knowledge about them in its Technology Database. This practice ensures that similar processes— tool choices, feeds and speeds, and milling strategies, for example—are used across similar features in all parts being produced.

When improvements are made to a process on one part, standardization ensures that similar improvements will be used on all future part programs. For example, if the choice of a different tool or machining strategy leads to longer tool life or reduced machine time when cutting a new alloy, the new tool can be employed to reduce costs in all future part designs.

Continuous improvement also improves product quality. It enables, for example, better machine finishes to be developed, reducing the cost of hand polishing and the attendant human error. Computer-controlled processes and machinery also are consistent, ensuring less variability among parts in a production run.

This consistency can produce near-zero defect rates when combined with statistical monitoring of machine adjustments and tool wear. When skilled and experienced NC programmers leave a company for another job or for well-deserved retirement, their knowledge of good machining practices often leaves with them.

With conventional CAM software, new workers hired to replace them have a nearly impossible time inferring these good practices from existing programs. With CAMWorks, new workers need only learn which types of features should be applied to the types of geometry that are not automatically recognized.

With the right features in place, good machining practices are automatically used. Customers speak with application engineers about their requirements, and the engineers enter appropriate values into a SolidWorks CAD application that generates the design for a set of pistons and connecting rods. When the piston and connecting rod models are complete, the NC programs to mill them are automatically generated using CAMWorks. The entire process is automated.

Another company in Sanford, Fla. Beginning with CT-scan data,. CAMWorks then automatically generates the program to mill each blank into a patient-specific device. As with CP-Carrillo,. No human interaction is required. In this case, speed is critical to minimize delay between diagnosis and treatment.

Example of a custom IMRT filter produced by. On the left, an example of a CP-Carrillo piston designed automatically and an example of a piston partially milled with CAMWorks is on the right.

Elements to be included in the Technology Database are: From the main dialog box, customers can define mills, lathes, and the operations associated with them. They can also define tools in the tool library, including special tools with unique cross sections. And the Tech DB allows feeds and speeds for different machine types to be associated with materials of varying strength and hardness such as mild steel, tool steel, and various grades of aluminum.

The top-level menu of the Technology Database. Most of the information in the Technology Database can be entered or modified from dialog boxes with parameter fields or pull-down menus. There is no need to write scripts or define data tables. Geometric Technologies has taken care of all this administration.

The Technical Database menus are three levels deep with multiple tabs at the lowest level. The multitude of options gives customers a lot of control over how their parts will be machined.

The Features and Operations dialog allows customers to define machining strategies for various types of features. However, learning what all the options mean, let alone which choices are optimal for a given situation, takes considerable time and experience.

The costs of this investment can be recouped by future labor savings, quality improvements, and machine time-savings that accrue from the practice of continuous improvement. The Operational Parameters dialog box for the Contour Milling operation strategies for various types of features. Fortunately, customers need not set up the entire technical database from scratch to begin improving productivity with CAMWorks. The software comes with a rich set of processes out of the box.

These processes can be modified by tool programmers as they are used and saved as new manufacturing strategies in the course of normal work. Consequently improvements to the Technical Database can be made gradually over time.

What is the best version of CAMWorks 2017 to buy? price

CAMWorks Handbook PDF Now Available

Reviews 3 SketchUp Pro is a professional yet simple to use 3D model design suite. It is well suited to designing interiors, architectural designing, landscape designing and similar applications that require 3D rendering. SketchUp Pro features include: A new initial welcome window that automates most tasks necessary for beginning work with SketchUp; A new "dashed line" interface element that allows seeing simple 2D projections of your 3D models and perceives their positions relative to each other with more ease; A more convenient interface for the "Tape Measure" tool, which offers measurements directly from a floating pop-up; Additional import and export features that allow you to exchange models with other 3D design applications, including but not limited to AutoCAD and LayOut; Various 3D printing related features, including: Solid Inspector. A new sub-instrument of the full Solid Inspector is the most important tool for preparing models for 3D printing in SketchUp. You can find it in the toolbar on the right side of the screen.


What's New in CAMWorks 2017

Windows Server 2008 R2 Standard Software Sales | what is the price of Solidworks 2010